Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Pest Manag Sci ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563449

RESUMO

BACKGROUND: Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been used to manage insect pests for nearly 30 years. Dose of a Bt crop is key to assessing the risk of resistance evolution because it affects the heritability of resistance traits. Western corn rootworm (Diabrotica virgifera virgifera, LeConte), a major pest of maize, has evolved resistance to all commercially available Bt traits targeting it, and threatens resistance to future transgenic traits. Past research shows the dose of Bt maize targeting western corn rootworm can be confounded by larval density-dependent mortality. We conducted a 2-year field study at two locations to quantify larval density-dependent mortality in Bt and non-Bt maize. We used these results to calculate dose for our method and compared it to three previously published methods. Additionally, adult emergence and root injury were analyzed for predicting initial egg density. RESULTS: Increased pest density caused greater proportions of larvae to die in Bt maize than in non-Bt maize. All methods for calculating dose produced values less than high-dose, and stochastic variation had the greatest impact on dose at high and low pest densities. Our method for calculating dose did not produce values positively correlated with pest density while the three other methods did. CONCLUSION: To achieve the most accurate calculation of dose for transgenic maize targeting western corn rootworm, density-dependent mortality should be taken into account for both transgenic and non-transgenic maize and assessed at moderate pest densities. © 2024 Society of Chemical Industry.

2.
Nat Commun ; 15(1): 907, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383456

RESUMO

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


Assuntos
Doenças Transmissíveis , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Transmissíveis/metabolismo , Biomarcadores/metabolismo , Fenótipo
4.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37286305

RESUMO

BACKGROUND: Chemoimmunotherapy represents the standard of care for patients with advanced non-small cell lung cancer (NSCLC) and programmed death-ligand 1 (PD-L1) <50%. Although single-agent pembrolizumab has also demonstrated some activity in this setting, no reliable biomarkers yet exist for selecting patients likely to respond to single-agent immunotherapy. The main purpose of the study was to identify potential new biomarkers associated with progression-free-survival (PFS) within a multiomics analysis. METHODS: PEOPLE (NTC03447678) was a prospective phase II trial evaluating first-line pembrolizumab in patients with advanced EGFR and ALK wild type treatment-naïve NSCLC with PD-L1 <50%. Circulating immune profiling was performed by determination of absolute cell counts with multiparametric flow cytometry on freshly isolated whole blood samples at baseline and at first radiological evaluation. Gene expression profiling was performed using nCounter PanCancer IO 360 Panel (NanoString) on baseline tissue. Gut bacterial taxonomic abundance was obtained by shotgun metagenomic sequencing of stool samples at baseline. Omics data were analyzed with sequential univariate Cox proportional hazards regression predicting PFS, with Benjamini-Hochberg multiple comparisons correction. Biological features significant with univariate analysis were analyzed with multivariate least absolute shrinkage and selection operator (LASSO). RESULTS: From May 2018 to October 2020, 65 patients were enrolled. Median follow-up and PFS were 26.4 and 2.9 months, respectively. LASSO integration analysis, with an optimal lambda of 0.28, showed that peripheral blood natural killer cells/CD56dimCD16+ (HR 0.56, 0.41-0.76, p=0.006) abundance at baseline and non-classical CD14dimCD16+monocytes (HR 0.52, 0.36-0.75, p=0.004), eosinophils (CD15+CD16-) (HR 0.62, 0.44-0.89, p=0.03) and lymphocytes (HR 0.32, 0.19-0.56, p=0.001) after first radiologic evaluation correlated with favorable PFS as well as high baseline expression levels of CD244 (HR 0.74, 0.62-0.87, p=0.05) protein tyrosine phosphatase receptor type C (HR 0.55, 0.38-0.81, p=0.098) and killer cell lectin like receptor B1 (HR 0.76, 0.66-0.89, p=0.05). Interferon-responsive factor 9 and cartilage oligomeric matrix protein genes correlated with unfavorable PFS (HR 3.03, 1.52-6.02, p 0.08 and HR 1.22, 1.08-1.37, p=0.06, corrected). No microbiome features were selected. CONCLUSIONS: This multiomics approach was able to identify immune cell subsets and expression levels of genes associated to PFS in patients with PD-L1 <50% NSCLC treated with first-line pembrolizumab. These preliminary data will be confirmed in the larger multicentric international I3LUNG trial (NCT05537922). TRIAL REGISTRATION NUMBER: 2017-002841-31.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Multiômica , Estudos Prospectivos , Biomarcadores
5.
Gut Pathog ; 15(1): 28, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322488

RESUMO

BACKGROUND: Formyl peptide receptor 2 (Fpr2) plays a crucial role in colon homeostasis and microbiota balance. Commensal E. coli is known to promote the regeneration of damaged colon epithelial cells. The aim of the study was to investigate the connection between E. coli and Fpr2 in the recovery of colon epithelial cells. RESULTS: The deficiency of Fpr2 was associated with impaired integrity of the colon mucosa and an imbalance of microbiota, characterized by the enrichment of Proteobacteria in the colon. Two serotypes of E. coli, O22:H8 and O91:H21, were identified in the mouse colon through complete genome sequencing. E. coli O22:H8 was found to be prevalent in the gut of mice and exhibited lower virulence compared to O91:H21. Germ-free (GF) mice that were pre-orally inoculated with E. coli O22:H8 showed reduced susceptibility to chemically induced colitis, increased proliferation of epithelial cells, and improved mouse survival. Following infection with E. coli O22:H8, the expression of Fpr2 in colon epithelial cells was upregulated, and the products derived from E. coli O22:H8 induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency increased susceptibility to chemically induced colitis, delayed the repair of damaged colon epithelial cells, and heightened inflammatory responses. Additionally, the population of E. coli was observed to increase in the colons of Fpr2-/- mice with colitis. CONCLUSION: Commensal E. coli O22:H8 stimulated the upregulation of Fpr2 expression in colon epithelial cells, and the products from E. coli induced migration and proliferation of colon epithelial cells through Fpr2. Fpr2 deficiency led to an increased E. coli population in the colon and delayed recovery of damaged colon epithelial cells in mice with colitis. Therefore, Fpr2 is essential for the effects of commensal E. coli on colon epithelial cell recovery.

6.
J Antimicrob Chemother ; 78(6): 1359-1366, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37038995

RESUMO

OBJECTIVES: To characterize a novel acquired MBL, BIM-1, in a Pseudomonas #2 (subgroup P. guariconensis) strain isolated from the Aurá river located in the Brazilian Amazon hydrographic basin. METHODS: WGS using an Illumina® MiSeq System was used to characterize the genome of Pseudomonas sp. IEC33019 strain. Southern blotting/hybridization assays were performed to confirm the location of the MBL-encoding gene, blaBIM-1 (Belém Imipenemase). Antimicrobial susceptibility testing, cloning, and biochemical and phenotypic characterization were performed to determine BIM-1 kinetics. RESULTS: The IEC33019 strain showed high resistance rates to ß-lactams, ciprofloxacin and aminoglycosides, being susceptible only to polymyxins and susceptible, increased exposure to aztreonam. WGS analysis revealed a novel acquired MBL-encoding gene, blaBIM-1, found as a gene cassette inserted into a class 1 integron (In1326) that also carried qnrVC1 and aadA11e. In1326 was located in a complex transposon, Tn7122, carried by a 52.7 kb conjugative plasmid (pIEC33019) with a toxin/antitoxin system (vapB/vapC). BIM-1 belongs to the molecular subgroup B1 and shares 70.2% and 64.9% similarity with SIM-1 and IMP-1, respectively. Kinetics analysis of BIM-1 showed hydrolytic activity against all ß-lactams tested. CONCLUSIONS: BIM-1 is a novel acquired MBL encoded by a gene carried by mobile genetic elements, which can be transferred to other Gram-negative bacilli (GNB). Because the IEC33019 strain was recovered from a river impacted by a populous metropolitan region with poor basic sanitation and served by limited potable freshwater, it would be important to establish the role of the BIM-1-producing GNB as nosocomial pathogens and/or as colonizers of the riverside population in this geographical region.


Assuntos
Pseudomonas , beta-Lactamases , Pseudomonas/genética , beta-Lactamases/genética , Brasil/epidemiologia , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , beta-Lactamas , Testes de Sensibilidade Microbiana
7.
Cell ; 186(9): 1846-1862.e26, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37028428

RESUMO

The use of probiotics by cancer patients is increasing, including among those undergoing immune checkpoint inhibitor (ICI) treatment. Here, we elucidate a critical microbial-host crosstalk between probiotic-released aryl hydrocarbon receptor (AhR) agonist indole-3-aldehyde (I3A) and CD8 T cells within the tumor microenvironment that potently enhances antitumor immunity and facilitates ICI in preclinical melanoma. Our study reveals that probiotic Lactobacillus reuteri (Lr) translocates to, colonizes, and persists within melanoma, where via its released dietary tryptophan catabolite I3A, it locally promotes interferon-γ-producing CD8 T cells, thereby bolstering ICI. Moreover, Lr-secreted I3A was both necessary and sufficient to drive antitumor immunity, and loss of AhR signaling within CD8 T cells abrogated Lr's antitumor effects. Further, a tryptophan-enriched diet potentiated both Lr- and ICI-induced antitumor immunity, dependent on CD8 T cell AhR signaling. Finally, we provide evidence for a potential role of I3A in promoting ICI efficacy and survival in advanced melanoma patients.


Assuntos
Limosilactobacillus reuteri , Melanoma , Microambiente Tumoral , Humanos , Dieta , Inibidores de Checkpoint Imunológico , Limosilactobacillus reuteri/metabolismo , Melanoma/terapia , Triptofano/metabolismo , Linfócitos T CD8-Positivos/imunologia , Receptores de Hidrocarboneto Arílico/agonistas
8.
Pediatr Res ; 94(3): 1158-1165, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37029236

RESUMO

BACKGROUND: The biological mechanism by which the maternal gastrointestinal microbiota contributes to fetal growth and neonatal birth weight is currently unknown. The purpose of this study was to explore how the composition of the maternal microbiome in varying pre-gravid body mass index (BMI) groups are associated with neonatal birth weight adjusted for gestational age. METHODS: Retrospective, cross-sectional metagenomic analysis of bio-banked fecal swab biospecimens (n = 102) self-collected by participants in the late second trimester of pregnancy. RESULTS: Through high-dimensional regression analysis using principal components (PC) of the microbiome, we found that the best performing multivariate model explained 22.9% of the variation in neonatal weight adjusted for gestational age. Pre-gravid BMI (p = 0.05), PC3 (p = 0.03), and the interaction of the maternal microbiome with maternal blood glucose on the glucose challenge test (p = 0.01) were significant predictors of neonatal birth weight after adjusting for potential confounders including maternal antibiotic use during gestation and total gestational weight gain. CONCLUSIONS: Our results indicate a significant association between the maternal gastrointestinal microbiome in the late second trimester and neonatal birth weight adjusted for gestational age. Moderated by blood glucose at the time of the universal glucose screening, the gastrointestinal microbiome may have a role in the regulation of fetal growth. IMPACT: Maternal blood glucose in the late second trimester significantly moderates the relationship between the maternal gastrointestinal microbiome and neonatal size adjusted for gestational age. Our findings provide preliminary evidence for fetal programming of neonatal birth weight through the maternal gastrointestinal microbiome during pregnancy.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido , Gravidez , Feminino , Humanos , Peso ao Nascer , Glicemia , Estudos Retrospectivos , Estudos Transversais , Índice de Massa Corporal
9.
Oncotarget ; 13: 876-889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875611

RESUMO

Cancer immunotherapy has significantly improved patient survival. Yet, half of patients do not respond to immunotherapy. Gut microbiomes have been linked to clinical responsiveness of melanoma patients on immunotherapies; however, different taxa have been associated with response status with implicated taxa inconsistent between studies. We used a tumor-agnostic approach to find common gut microbiome features of response among immunotherapy patients with different advanced stage cancers. A combined meta-analysis of 16S rRNA gene sequencing data from our mixed tumor cohort and three published immunotherapy gut microbiome datasets from different melanoma patient cohorts found certain gut bacterial taxa correlated with immunotherapy response status regardless of tumor type. Using multivariate selbal analysis, we identified two separate groups of bacterial genera associated with responders versus non-responders. Statistical models of gut microbiome community features showed robust prediction accuracy of immunotherapy response in amplicon sequencing datasets and in cross-sequencing platform validation with shotgun metagenomic datasets. Results suggest baseline gut microbiome features may be predictive of clinical outcomes in oncology patients on immunotherapies, and some of these features may be generalizable across different tumor types, patient cohorts, and sequencing platforms. Findings demonstrate how machine learning models can reveal microbiome-immunotherapy interactions that may ultimately improve cancer patient outcomes.


Assuntos
Microbioma Gastrointestinal , Melanoma , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia , Aprendizado de Máquina , Melanoma/terapia , RNA Ribossômico 16S/genética
10.
Nat Med ; 28(3): 545-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228752

RESUMO

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico
11.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
12.
Science ; 374(6564): 154-155, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34618567

RESUMO

Testosterone-synthetizing gut bacteria drive resistance to therapy.


Assuntos
Neoplasias da Próstata , Bactérias , Humanos , Masculino
13.
Nat Metab ; 3(8): 1042-1057, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417593

RESUMO

Obesity and its consequences are among the greatest challenges in healthcare. The gut microbiome is recognized as a key factor in the pathogenesis of obesity. Using a mouse model, we show here that a wild-derived microbiome protects against excessive weight gain, severe fatty liver disease and metabolic syndrome during a 10-week course of high-fat diet. This phenotype is transferable only during the first weeks of life. In adult mice, neither transfer nor severe disturbance of the wild-type microbiome modifies the metabolic response to a high-fat diet. The protective phenotype is associated with increased secretion of metabolic hormones and increased energy expenditure through activation of brown adipose tissue. Thus, we identify a microbiome that protects against weight gain and its negative consequences through metabolic programming in early life. Translation of these results to humans may identify early-life therapeutics that protect against obesity.


Assuntos
Dieta , Resistência à Doença , Suscetibilidade a Doenças , Exposição Ambiental , Interações entre Hospedeiro e Microrganismos , Microbiota , Obesidade/etiologia , Ração Animal , Animais , Dieta/efeitos adversos , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Microbioma Gastrointestinal , Camundongos , Fatores de Tempo , Aumento de Peso
14.
Ticks Tick Borne Dis ; 12(5): 101746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091278

RESUMO

Ticks are one of the main vectors of pathogens for humans and animals worldwide. However, they harbor non-pathogenic microorganisms that are important for their survival, facilitating both their nutrition and immunity. We investigated the bacterial communities associated with two neotropical tick species of human and veterinary potential health importance from Brazil: Amblyomma aureolatum and Ornithodoros brasiliensis. In A. aureolatum (adult ticks collected from wild canids from Southern Brazil), the predominant bacterial phyla were Proteobacteria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actinobacteria (0.13%), and Acidobacteria (0.05%). The predominant genera were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), Candidatus Midichloria (0.25%), and Alkanindiges (0.13%). The predominant phyla in O. brasiliensis (adults, fed and unfed nymphs collected at the environment from Southern Brazil) were Proteobacteria (90.27%), Actinobacteria (7.38%), Firmicutes (0.77%), Bacteroidetes (0.44%), and Planctomycetes (0.22%). The predominant bacterial genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora (0.54%), Marmoricola (0.42%), and Staphylococcus (0.40%). Considering the genera with potential importance for human and animal health which can be transmitted by ticks, Coxiella sp. was found in all stages of O. brasiliensis, Francisella sp. in all stages of A. aureolatum and in unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of A. aureolatum from Banhado dos Pachecos (BP) in Viamão municipality, Brazil, and in females and unfed nymphs of O. brasiliensis. These results deepen our understanding of the tick-microbiota relationship in Ixodidae and Argasidae, driving new studies with the focus on the manipulation of tick microbiota to prevent outbreaks of tick-borne diseases in South America.


Assuntos
Amblyomma/microbiologia , Microbiota , Ornithodoros/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Coxiella/genética , Coxiella/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Francisella/genética , Francisella/isolamento & purificação , Ixodidae/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Rickettsia/genética , Rickettsia/isolamento & purificação
15.
Science ; 371(6529): 595-602, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542131

RESUMO

Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transplante de Microbiota Fecal , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Humanos , Interleucina-8/imunologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
16.
Cell ; 184(3): 615-627.e17, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453153

RESUMO

The microbiota shields the host against infections in a process known as colonization resistance. How infections themselves shape this fundamental process remains largely unknown. Here, we show that gut microbiota from previously infected hosts display enhanced resistance to infection. This long-term functional remodeling is associated with altered bile acid metabolism leading to the expansion of taxa that utilize the sulfonic acid taurine. Notably, supplying exogenous taurine alone is sufficient to induce this alteration in microbiota function and enhance resistance. Mechanistically, taurine potentiates the microbiota's production of sulfide, an inhibitor of cellular respiration, which is key to host invasion by numerous pathogens. As such, pharmaceutical sequestration of sulfide perturbs the microbiota's composition and promotes pathogen invasion. Together, this work reveals a process by which the host, triggered by infection, can deploy taurine as a nutrient to nourish and train the microbiota, promoting its resistance to subsequent infection.


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Contagem de Colônia Microbiana , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade , Camundongos Endogâmicos C57BL , Sulfetos/metabolismo , Taurina/farmacologia
17.
J Pathol ; 253(3): 339-350, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33104252

RESUMO

The cathelin-related antimicrobial peptide CRAMP protects the mouse colon from inflammation, inflammation-associated carcinogenesis, and disrupted microbiome balance, as shown in systemic Cnlp-/- mice (also known as Camp-/- mice). However, the mechanistic basis for the role and the cellular source of CRAMP in colon pathophysiology are ill defined. This study, using either epithelial or myeloid conditional Cnlp-/- mice, demonstrated that epithelial cell-derived CRAMP played a major role in supporting normal development of colon crypts, mucus production, and repair of injured mucosa. On the other hand, myeloid cell-derived CRAMP potently supported colon epithelial resistance to bacterial invasion during acute inflammation with exacerbated mucosal damage and higher rate of mouse mortality. Therefore, a well concerted cooperation of epithelial- and myeloid-derived CRAMP is essential for colon mucosal homeostasis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Epiteliais/metabolismo , Homeostase/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/fisiologia , Camundongos , Camundongos Knockout , Catelicidinas
18.
Brain Behav Immun ; 91: 472-486, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157257

RESUMO

The gut microbiome appears to play an important role in human health and disease. However, only little is known about how variability in the gut microbiome contributes to individual differences during early and sensitive stages of brain and behavioral development. The current study examined the link between gut microbiome, brain, and behavior in newborn infants (N = 63; M [age] = 25 days). Infant gut microbiome diversity was measured from stool samples using metagenomic sequencing, infant functional brain network connectivity was assessed using a resting state functional near infrared spectroscopy (rs-fNIRS) procedure, and infant behavioral temperament was assessed using parental report. Our results show that gut microbiota composition is linked to individual variability in brain network connectivity, which in turn mediated individual differences in behavioral temperament, specifically negative emotionality, among infants. Furthermore, virulence factors, possibly indexing pathogenic activity, were associated with differences in brain network connectivity linked to negative emotionality. These findings provide novel insights into the early developmental origins of the gut microbiome-brain axis and its association with variability in important behavioral traits. This suggests that the gut microbiome is an important biological factor to consider when studying human development and health.


Assuntos
Microbioma Gastrointestinal , Adulto , Encéfalo , Humanos , Lactente , Recém-Nascido , Temperamento
19.
Methods Mol Biol ; 2055: 595-638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31502171

RESUMO

Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Metagenômica/métodos , Fatores Etários , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota , Pessoa de Meia-Idade , Análise de Sequência de DNA
20.
J Med Entomol ; 57(1): 122-130, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31504688

RESUMO

The northern fowl mite (NFM) Ornithonyssus sylviarum Canestrini and Fanzago is a blood-feeding ectoparasite found on many wild bird species and is a pest of poultry in the United States. It is unknown where NFM infestations of poultry originate, which has made it difficult to establish preventative biosecurity or effective control. We used microsatellite markers to evaluate genetic variation within and among NFM populations to determine routes of introduction onto farms and long-term persistence. We compared NFM from flocks of chickens (Gallus gallus) on different farms in California, Washington, and Georgia, and we compared NFM collected over a 5-yr interval. On three farms we collected NFM from chickens and house sparrows (Passer domesticus) nesting on each farm, which we used to assess movement between host species. There was strong genetic structure among mites from different poultry farms and low estimates of migration between farms. There were significant differences between mites on chickens and house sparrows on two farms where sparrows nested near flocks, indicating no exchange of mites. Only one farm showed evidence of NFM movement between chickens and sparrows. There was high genetic similarity between mites collected 5 yr apart on each of two farms, indicating that NFM infestations can persist for long periods. The genetic patterns did not reveal sources of NFM infestations on chicken farms. The data suggest that NFMs are strongly differentiated, which likely reflects periodic population declines with flock turnover and pesticide pressure.


Assuntos
Doenças das Aves/parasitologia , Galinhas , Fluxo Gênico , Infestações por Ácaros/veterinária , Ácaros/genética , Pardais , Animais , California , Georgia , Infestações por Ácaros/parasitologia , Doenças das Aves Domésticas/parasitologia , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...